DMM301 – Benefits and Patterns of a Logical Data Warehouse with SAP BW on SAP HANA

Ulrich Christ/Product Management SAP EDW (BW/HANA)
Disclaimer

This presentation outlines our general product direction and should not be relied on in making a purchase decision. This presentation is not subject to your license agreement or any other agreement with SAP. SAP has no obligation to pursue any course of business outlined in this presentation or to develop or release any functionality mentioned in this presentation. This presentation and SAP's strategy and possible future developments are subject to change and may be changed by SAP at any time for any reason without notice. This document is provided without a warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. SAP assumes no responsibility for errors or omissions in this document, except if such damages were caused by SAP intentionally or grossly negligent.
Agenda

Introduction
• Diverse BI Landscapes
• Logical Data Warehousing with SAP BW 7.40 powered by SAP HANA
• System Demos

LSA++ Incremental Data Warehousing
• Simplified and Incremental Architectures
• System Demos
• Raw and Business Oriented Data Warehouse

Wrap up
• Key Takeaways
Introduction – Diverse BI Landscapes

Today’s BI landscapes consists of multiple information management approaches with different characteristics

The (Enterprise) Data Warehouse is a central component which addresses services like

- Consolidation
- Integration
- Managed (business) consistency
- Reproducibility
- Availability
- Auditability
- Reliability
- any Snapshot
- Time travel enablement
- Predictive analysis foundation
- Stable interoperability
- Maintainable business transformation complexity
- Handle resource limitations
- …
Introduction – the Logical Data Warehouse
Service level requirements driven

Logical Data Warehousing describes architectures that
- combine these approaches under a reusable layer of information models
- choose or change the approach according to service levels or use case characteristics
Gartner and LDW – Logical Data Warehouse
The role of reusable metadata for flexibility and simplicity

The LDW consists primarily of services and metadata. The metadata must be **reusable** across all classes of services operating. For example,

- as data virtualization jobs begin to specify recurring relationships in data, **moving the virtual data toward** a high-performance **repository** rendering.
- or, if a distributed process emerges as commonly used over time, the same metadata should be **usable to convert** the process into a data integration job and move the results **to tables** …**in a repository**

Reusable Metadata
- The metadata must be **reusable** across all classes of services
- Same metadata should be **usable**
- **to move the virtual data toward** a repository
- **to convert** the process .. results **to tables** …**in a repository**

- **Repositories**
 - EDW, DMs, ODS
 - **physical consolidated**
- **Virtualization**
 - **read the data in place**
- **Distributed process**
 - managed service call to external provider
Logical Data Warehousing with SAP BW on SAP HANA

Reusable, flexible Metadata Layer in SAP BW
- Open ODS View to adapt tables/views in SAP HANA and external sources
- CompositeProvider to build sophisticated virtual data marts
- Advanced DataStore Object as central repository object

SAP HANA Smart data access
- SAP HANA’s federation capability
- Provides transparent SQL access to, and across a variety of database systems
BW Open ODS Views and the LDW
Decoupling persistent data from semantics & associations modeling

InfoObject-based
- Query, CompositeProvider

Field-based
- Query, CompositeProvider

Functions Modeling
- agile combine & associate

Semantics and Associations Modeling on persistent data
- Master, text, dimension
- Transaction, fact
- Propagator, Corporate memory
- Characteristic, key-figure
- Key-figure behaviour
- ...

Persistent Data Modeling
- 3NF, denormalized, data vault..
- Key, Attributes,
- Delta criteria
- Partitioning
- History handling
- Consistency handling

Tight coupling
- of semantics and associations modeling with persistent data model

De-coupling
- of semantics and associations modeling from persistent data model

InfoObject-based

Field-based

- Master Open ODS Views
- Fact Open ODS View

- Fields, ADSOs
- in place data Table, DB-View
System Demo Part 1
Address data outside of the BW repository

Virtualized Access
- Data Mart / parts of Data Mart residing in an external database
- Adapt model via Open ODS Views
- Run query on Open ODS Views
Moving to SAP BW

- Enrich Open ODS View with BW semantics
- Generate Advanced DSO from Open ODS View
- Re-run query on Open ODS Views
Recap

Simplification
- Initial steps with SAP BW become really simple
- Ready to use advanced SAP BW functionality
 - OLAP
 - Data flow, data management, …
 - Security/authorizations, …

Incremental („bottom up“) modelling approach
- start with given structures
- work with data interactively
- enrich and extend iteratively
LSA++

Incremental Data Warehousing

How does this impact flexibility and agility of the Data Warehouse?
Different design approaches of landscape components lead to data & meta data movements/redundancy

Missing alignment possibilities lead to islands & inconsistencies

- DWH-model based BI
- High design governance, focus on
 - Consistency, history
 - Cross process integration
 - Common
 - Coded data
 - Master data/dimensions
 - Interpretation of data

- OLTP-model based BI
- Low design governance, focus on
 - Flexibility, Independence
 - Virtualization/low cost BI
 - Most recent/actual data

Operational/Local BI
Source system - Open ODS
Modeling and BI Architecture
There is no ‘neither .. nor’ - Reconciling Top-Down and Bottom-Up Approaches

Top Down modeling

Business/ Domain Integrated BI (E) DWH

- DWH-model based BI
- High design governance, focus on
 - Consistency, history
 - Cross process integration
- Common
 - Coded data
 - Master data/ dimensions
 - Interpretation of data

Different design approaches of landscape components lead to data movements/ redundancy

Bottom Up modeling

Service level requirements ⇒ evolve Local/ Operational BI to DWH where it shows value

- OLTP-model based BI
- Low design governance, focus on
 - Flexibility, Independency
 - Virtualization / low cost BI
 - Most recent/ actual data

Service level requirements ⇒ leverage bottom up modeling flexibility where it shows value

Operational / Local BI
Source system - Open ODS

© 2014 SAP SE or an SAP affiliate company. All rights reserved.
There is no ‘neither .. nor’ - Reconciling Top-Down and Bottom-Up Approaches

Top Down modeling

- DWH-model based BI
- High design governance, focus on
 - Consistency, history
 - Cross process integration
- Common
 - Coded data
 - Master data/dimensions
 - Interpretation of data

Bottom Up modeling

- OLTP-model based BI
- Low design governance, focus on
 - Flexibility, Independency
 - Virtualization/low cost BI
 - Most recent/actual data

Different design approaches lead to data movements/redundancy/missing alignment possibilities lead to islands & inconsistencies

Service level requirements ⇒ leverage bottom up modeling flexibility where it shows value

Service level requirements ⇒ evolve Local/Operational BI to DWH where it shows value

Operational/Local BI Source system - Open ODS
Simplified and Incremental Architectures

Reusable meta data - Virtual Data Marts – fact / dimension views

Raw – Domain related DWH

Open ODS

Historic

Transformed - Business Integrated DWH

Persistant Data Marts DWH

Business/ Service Level Requirements

Source

Most recent

Actual

most recent
System Demo Part 1

From ODS to Raw Data Warehouse

- Data flow to historize ODS data
- Extend Open ODS View
System Demo Part 2

Extending the Business Integrated Data Warehouse

- Extend CompositeProvider with attributes from Open ODS View
Raw and Business Integrated Data Warehouse

Governed by Sources
- Structures, Changes, Scheduling
- Domain specific entities, some degree of reuse
- “bottom up“

Governed by Business Requirements
- Harmonized, consolidated, agreed-on structures
- Central, highly reusable entities
- “top down“
Wrap Up
Key Takeaways

SAP BW 7.40 powered by SAP HANA

- Supports the Logical Data Warehouse paradigm
- Provides lean and agile mechanisms to integrate and leverage external data
- LSA++ continues to evolve to provide more services on source level data
UPCOMING:
openSAP SAP Business Warehouse powered by SAP HANA course

• 4 Weeks of videos, demonstrations and explanation focused on SAP BW 7.4 powered by SAP HANA

• Free Participation & Record of Achievement

https://open.sap.com/
SAP d-code Virtual Hands-on Workshops and SAP d-code Online
Continue your SAP d-code education after the event!

SAP d-code Virtual Hands-on Workshops
• Access hands-on workshops post-event
• Starting January 2015
• Complementary with your SAP d-code registration

http://sapdcodehandson.sap.com

SAP d-code Online
• Access replays of keynotes, Demo Jam, SAP d-code live interviews, select lecture sessions, and more!
• Hands-on replays

http://sapdcode.com/online
Further Information

SAP Public Web
scn.sap.com
www.sap.com

SAP Education and Certification Opportunities
www.sap.com/education

Watch SAP d-code Online
www.sapcode.com/online
Feedback

Please complete your session evaluation for DMM301

Thanks for attending this SAP TechEd & d-code session.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. Please see http://global12.sap.com/corporate-en/legal/copyright/index.epx for additional trademark information and notices.

Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors.

National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP SE or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP SE or SAP affiliate company products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE’s or its affiliated companies’ strategy and possible future developments, products, and/or platform directions and functionality are all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of their dates, and they should not be relied upon in making purchasing decisions.